Describing the dynamics of processes consisting simultaneously of Poissonian and non-Poissonian kinetics
نویسندگان
چکیده
Dynamical processes exhibiting non-Poissonian kinetics with nonexponential waiting times are frequently encountered in nature. Examples are biochemical processes like gene transcription which are known to involve multiple intermediate steps. However, often a second process, obeying Poissonian statistics, affects the first one simultaneously, such as the degradation of mRNA in the above example. The aim of the present article is to provide a concise treatment of such random systems which are affected by regular and non-Poissonian kinetics at the same time. We derive the governing master equation and provide a controlled approximation scheme for this equation. The simplest approximation leads to generalized reaction rate equations. For a simple model of gene transcription we solve the resulting equation and show how the time evolution is influenced significantly by the type of waiting time distribution assumed for the non-Poissonian process.
منابع مشابه
Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion
In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...
متن کاملLevel spacing statistics of classically integrable systems: investigation along the lines of the Berry-Robnik approach.
By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consisting of infinitely many independent components is investigated. The limiting level spacing distribution is characterized by a single monotonically increasing function mu(S) of the level spacing S. Three cases are distinguished: (1) Poissonian if mu(+ infinity)=0, (2) Poissonian for large S, ...
متن کاملLevel Spacing Statistics of Classically Integrable Systems -investigation along the Line of the Berry-robnik Approach
By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consisting of infinitely many independent components is investigated. The limiting level spacing distribution is characterized by a single monotonically increasing function μ̄(S) of the level spacing S. Three cases are distinguished: (i) Poissonian if μ̄(+∞) = 0, (ii) Poissonian for large S, but pos...
متن کامل2 00 3 Level spacing statistics of classically integrable systems -
By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consisting of infinitely many independent components is investigated. The limiting level spacing distribution is characterized by a single monotonically increasing function μ̄(S) of the level spacing S. Three cases are distinguished: (i) Poissonian if μ̄(+∞) = 0, (ii) Poissonian for large S, but pos...
متن کاملLevel Spacing Statistics of Classically Integrable Systems -investigation along the Line of the Berry-robnik Approach- Typeset Using Revt E X 1
By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consisting of infinitely many independent components is investigated. The limiting level spacing distribution is characterized by a single monotonically increasing function μ̄(S) of the level spacing S. Three cases are distinguished: (i) Poissonian if μ̄(+∞) = 0, (ii) Poissonian for large S, but pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013